Author Archives: JEMCK7

Sensitivity analysis of energy performance and thermal comfort throughout building design process

Abstract

In a traditional building design process (TDP), design variables are fixed sequentially, as opposed to integrated design process (IDP) which tends to avoid sequential design phases to create more sustainable buildings. First, a reference building is introduced and an energy model based on TRNSYS is presented to determine the energy consumption and comfort in the building. The model is validated based on energy bills, certified simulations and literature. Then, the paper performs an extended sensitivity analysis (SA) of 30 design variables with respect to different performance criteria related to energy consumption and comfort, based on a TRNSYS model. Three SA techniques were used, namely standard regression coefficients (SRC), partial rank correlation coefficients (PRCC) and Sobol indices. Results show that all three techniques yielded a similar ranking of the importance of the variables for most model outputs. Interactions between variables were identified with second-order Sobol indices. In the second part of this paper, a traditional design framework was adopted in which sets of variables were fixed sequentially. A SA was performed at each phase of the process, assuming fixed values for parameters chosen in previous design phases. Results show that fixing variables during the phases of a traditional design process tends to reduce the probabilities of finding low-energy consumption designs. Moreover, the influence of some variables was found to change during the design phases.

Comparison between two genetic algorithms minimizing carbon footprint of energy and materials in a residential building

Abstract

The emergence of building performance optimization is recognized as a way to achieve sustainable building designs. In this paper, the problem consists in minimizing simultaneously the emissions of greenhouse gases (GHG) related to building energy consumption and those related to building materials. This multi-objective optimization problem involves variables with different hierarchical levels, i.e. variables that can become obsolete depending on the value of the other variables. To solve it, NSGA-II is compared with an algorithm designed specifically to deal with hierarchical variables, namely sNSGA. Evaluation metrics such as convergence, diversity and hypervolume show that both algorithms handle hierarchical variables, but the analysis of the Pareto front confirms that in the present case, NSGA-II is better to identify optimal solutions than sNSGA. All the optimal solutions are made of buildings with wooden envelopes and relied either on heat pumps or on electrical heaters for proving heating.

Evaluating the link between low carbon reductions strategies and its performance in the context of climate change: A carbon footprint of a qood-frame residential building in Quebec, Canada

Abstract

The design and study of low carbon buildings is a major concern in a modern economy
due to high carbon emissions produced by buildings and its effects on climate change. Studies have investigated (CFP) Carbon Footprint of buildings, but there remains a need for a strong analysis that measure and quantify the overall degree of GHG emissions reductions and its relationship with the effect on climate change mitigation. This study evaluates the potential of reducing greenhouse gas (GHG) emissions from the building sector by evaluating the (CFP) of four hotpots approaches defined in line with commonly carbon reduction strategies, also known as mitigation strategies. CFP framework is applied to compare the (CC) climate change impact of mitigation strategies. A multi-story timber residential construction in Quebec City (Canada) was chosen as a baseline scenario. This building has been designed with the idea of being a reference of sustainable development application in the building sector. In this scenario, the production of materials and construction (assembly, waste management and transportation) were evaluated. A CFP that covers eight actions divided in four low carbon strategies, including: low carbon materials, material minimization, reuse and recycle materials and adoption of local sources and use of biofuels were evaluated. The results of this study shows that the used of prefabricated technique in buildings is an alternative to reduce the CFP of buildings in the context of Quebec. The CC decreases per m2 floor area in baseline scenario is up to 25% than current buildings. If the benefits of low carbon strategies are included, the timber structures can generate 38% lower CC than the original baseline scenario. The investigation recommends that CO2eq emissions reduction in the design and implementation
of residential constructions as climate change mitigation is perfectly feasible by following different working strategies. It is concluded that if the four strategies were implemented in current buildings they would have environmental benefits by reducing its CFP. The reuse wood wastes into production of particleboard has the greatest environmental benefit due to temporary carbon storage.

Implementation of integrated project delivery in Quebec’s procurement for public infrastructure: A comparative and relational perspective

Abstract

Province of Quebec (Canada) is in the process of implementing integrated project delivery (IPD) in its procurement process for public infrastructure to more effectively and efficiently achieve functional, environmental, and economic objectives. This paper analyzes the procurement legislation, regulations, and context of three jurisdictions through a comparative law approach and under the light of Macneil’s relational contract theory. It is found that Quebec’s procurement process has transactional features that should be counterbalanced, in the context of IPD implementation, by focusing on relational values, whether at the macro or personal level. These relational mechanisms should help legislators and public bodies establishing and operationalizing a viable and relational context of professional services and construction works procurement for IPD projects.

Effect of Adding UV Absorbers Embedded in Carbonate Calcium Templates Covered with Light Responsive Polymer into a Clear Wood Coating

Abstract

The limited durability of clear coatings is a major issue for the coating and wood industry.
The addition of organic UV absorbers improves coating resistance by the absorption and the
conversion of the UV radiation into harmless heat. Organic UVAs are prone to degradation and can migrate in the binder of coatings. In this study, commercial UVAs and HALS have been entrapped into CaCO3 templates coated with stimuli responsive polymers. Microspheres were incorporated into a clear acrylic water-based coating formulation. The formulation was applied on glass and wood panels and was placed into an artificial UV chamber. This study presents a comparison between the aesthetic behavior of coating formulations with free and encapsulated commercial UVAs and HALS during the accelerated ageing test. Encapsulation of UVAs was confirmed by XPS and TGA analysis. Results have shown that the coating’s aesthetic was slightly improved when using the encapsulated products.

Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage

Abstract

Decorative wood panels containing pouches of bio-based phase changing materials (PCMs) were prepared. Three different PCM mixtures were used: a blend of capric and lauric acids as well as two commercial products, Puretemp®20 and Puretemp®23 (Puretemp). The panels consist of engraved Medium Density Fiberboard (MDF) filled with a plastic pouch filled with PCM. High density fiberboard (HDF) was used on top of the panels to enclose the PCM pouches. PCM mixtures were first tested by differential scanning calorimetry (DSC). Phase change temperature and total heat storage of the panels were measured for both fusion and solidification with a Dynamic Heat-Flow Meter Apparatus (DHFMA). DSC and DHFMA results were compared, allowing a better understanding of results gathered from these two techniques. DSC calibration has been revealed important when assessing PCMs. The panels present a phase change temperature and a latent heat storage suitable for buildings applications. The panel made with Puretemp®23 presented the highest energy, with 57.1 J/g. Thermal cycling was conducted on the panels to investigate thermal reliability, which revealed small modifications of thermal properties for two products. For all cases, latent heat was found stable. Hygro-mechanical behavior of the panels was also evaluated as these where designed to be aesthetic decorative panels. This study exposes the potential of a new type of wood-based panels loaded with PCM for thermal energy storage and brings overall knowledge about PCM products thermal characterization.

Lien vers l’article

Assessing the climate change impacts of biogenic carbon in buildings: A critical review of two main dynamic approaches

Abstract

Wood is increasingly perceived as a renewable, sustainable building material. The carbon it contains, biogenic carbon, comes from biological processes; it is characterized by a rapid turnover in the global carbon cycle. Increasing the use of harvested wood products (HWP) from sustainable forest management could provide highly needed mitigation efforts and carbon removals. However, the combined climate change benefits of sequestering biogenic carbon, storing it in harvested wood products and substituting more emission-intensive materials are hard to quantify. Although different methodological choices and assumptions can lead to opposite conclusions, there is no consensus on the assessment of biogenic carbon in life cycle assessment (LCA). Since LCA is increasingly relied upon for decision and policy making, incorrect biogenic carbon assessment could lead to inefficient or counterproductive strategies, as well as missed opportunities. This article presents a critical review of biogenic carbon impact assessment methods, it compares two main approaches to include time considerations in LCA, and suggests one that seems better suited to assess the impacts of biogenic carbon in buildings.

Lien vers l’article